Tag: análisis estadístico

JAVA

Actualmente, según el índice TIOBE (octubre 2018) es el lenguaje de programación más popular del mundo. Tanto es así que hay miles de softwares, apps y sitios web que no funcionarán a menos que tengan Java instalado. Este lenguaje de programación posee su propia estructura, reglas de sintaxis y paradigma de programación, como cualquier otro lenguaje. Se trata de una derivación del Lenguaje C, por lo que por lo que las reglas de sintaxis se parecen mucho a este lenguaje C. Java es un lenguaje de programación que desarrollado por James Gosling de Sun Microsystems en 1995.

PYTHON

Es uno de los lenguajes de programación más utilizados y el más adecuado para implementar algoritmos de productividad. Python es de código abierto y proporciona un enfoque más generalizado para la ciencia de datos (Data Science). Toda la información relativa a este lenguaje de programación es libre. Python fue creado por Guido Van Rossum en el año 1991 en los Países Bajos. Python posee este nombre por los seis humoristas británicos “Monty Python”, coloquialmente conocidos como “Los Pythons”.

El lenguaje Python es más apropiado para implementar algoritmos de productividad. A través de Python, se tiene acceso a un gran número de paquetes para desarrolladores que permiten crear un código general de manera rápida y vincular flujos de trabajos o componentes. Python permite programar en varios estilos: programación orientada a objetos, estructurada, funcional y orientada a aspectos.

Lenguaje R

El software R se puede utilizar como lenguaje de programación, pero esa no es su fortaleza. Principalmente este lenguaje se utiliza para el análisis estadístico, manipulación de grandes volúmenes de datos y representación gráfica de alta calidad. R apareció por primera vez en 1996, de la mano de los profesores de estadística Ross Ihaka y Robert Gentleman de la Universidad de Auckland en Nueva Zelanda. El nombre surgió de las iniciales de ambos y se inspiró en el lenguaje S de Bell Labs. El lenguaje R es fruto de un proyecto colaborativa que implica a miles de usuarios de todo el mundo. Se trata de un software que está permanentemente actualizado, con funciones nuevas y paquetes accesibles en tiempo real.

Actualmente posee uno de los ecosistemas más ricos para realizar análisis de datos, alrededor de 1.200 paquetes disponibles en Open Source disponible para los sistemas operativos Windows, MACOs, Unix y Linux. Gracias a R,  se puede decodificar lenguajes de programación y se puede acceder a la lectura de datos procesados en softwares como Excel, SPSS, etc.  Tal es su potencial que se trata del software predilecto de cualquier Data Scientist de la comunidad científica internacional. Además, posee un entorno gráfico con una amplia gama de herramientas estadísticas clásicas y avanzadas para el análisis y la representación gráfica de datos exportables  en diversos formatos: pdf, bitmap, png, jpeg, etc. permite generar gráficos con alta calidad, con sólo utilizar las funciones de graficación.

R posee una gran relevancia en áreas de Big Data, minería de datos, Inteligencia Artificial, análisis predictivos, matemáticas financieras, ingeniería industrial, …