Quantcast

Nuestro Blog

La inteligencia artificial en la actualidad juega un papel importante en nuestra vida cotidiana; desde nuestros teléfonos inteligentes (smartphones) a otros dispositivos electrónicos como neveras inteligentes. La tecnología nos ha proporcionado oportunidades de cambiar nuestro modo de vida tanto en el trabajo como al hacer la compra, consumir energía, etc.

La  tecnología se vuelve, cada vez más, más inteligente y con capacidades múltiples: procesamiento de lenguaje natural, visión artificial, sistemas de recomendaciones, entre otros. Sin embargo, pese a que la inteligencia artificial y las máquinas se hayan convertido en parte de la vida cotidiana, esto no significa que las entendamos bien. Por este motivo queremos explicar qué diferencias existen entre Inteligencia Artificial (IA), Machine Learning y Deep Learning para entender mejor el entorno en el que se construye a nuestro alrededor con estas tecnologías inteligentes.

Qué es Inteligencia Artificial

En computación, la Inteligencia Artificial se trata de programas o bots diseñados para realizar determinadas operaciones que se consideran propias de la inteligencia humana. Se trata de hacer que éstos sean tan inteligentes como un humano. La idea es que perciban su entorno y actúen en base a ello, centrado en el auto-aprendizaje y que sean capaces de reaccionar ante nuevas situaciones.

El sueño de los pioneros en Inteligencia Artificial era construir máquinas complejas, habilitadas por computadoras emergentes, que poseyeran las mismas características de la inteligencia humana. Este es el concepto que consideramos “genérico” de Inteligencia Artificial: maquinas fabulosas que tienen todos nuestros sentidos (tal vez incluso más), toda nuestra razón y piensan igual que nosotros.  Podemos poner ejemplos de este concepto en películas como Star Wars (C-3PO) o Teminator. Claro está que este concepto genérico de máquinas de IA sólo quedan en el imaginario del cine y de novelas de ciencia ficción por una buena razón: no podemos llevarlo a cabo, por ahora.

imagenes similares pinterest

Imágenes similares en Pinterest

Sin embargo, sí existen en la actualidad tecnologías que pueden realizar tareas específicas que normalmente requieren inteligencia humana, como la percepción visual, el reconocimiento de voz, la toma de decisiones y la traducción entre idiomas. Algunos ejemplos de este tipo de Inteligencia Artificial, en la actualidad, son cosas como la clasificación de imágenes similares en Pinterest o Google Images y el reconocimiento facial en Face ID en  iPhone.

Estos son claros ejemplos de Inteligencia Artificial que exhiben algunas características de la inteligencia humana. Pero, ¿cómo lo hacen? ¿De dónde viene esa inteligencia? Eso nos lleva al siguiente concepto, Machine Learning.

Qué es Machine Learning

Machine Learning o aprendizaje automático es un subconjunto de Inteligencia Artificial en el campo de la informática que a menudo utiliza técnicas estadísticas para dar a las computadoras la capacidad de “aprender” (es decir, mejorar progresivamente el rendimiento en una tarea específica) con datos, sin estar explícitamente programadas.

En otras palabras, el aprendizaje automático en su forma más básica es la práctica de usar algoritmos para analizar datos, aprender de ellos y luego hacer una determinación o predicción sobre algo en el mundo. Por lo tanto, la máquina está “entrenada” utilizando grandes cantidades de datos y algoritmos que le dan la capacidad de aprender a realizar la tarea por sí misma.

El aprendizaje automático vino directamente de las mentes de los pioneros en Inteligencia Artificial. Resultó que una de las mejores áreas de aplicación para el aprendizaje automático, durante muchos años, fue la visión por computadora, aunque requería una gran cantidad de codificación manual para hacer el trabajo. La gente entraba y escribía clasificadores codificados a mano, como filtros de detección de bordes, para que el programa identificara dónde se inició y se detuvo un objeto; detección de forma para determinar si tenía ocho lados; o  un clasificador para reconocer las letras “S-t-o-p”. De todos los clasificadores codificados a mano, desarrollarían algoritmos para dar sentido a la imagen y “aprender” a determinar si era una señal de Stop, especialmente en un día de niebla cuando el cartel no es perfectamente visible o un árbol oscurece parte de él. Hay una razón por la que la visión por computadora y la detección de imágenes no se acercan a rivalizar con los humanos. Hasta hace poco, era demasiado frágil y propenso al error. Con el tiempo, los algoritmos de aprendizaje se corrigieron y marcaron una diferencia; esto nos lleva al siguiente concepto, Deep Learning.

Qué es Deep Learning

Deep Learning o aprendizaje profundo es una técnica dentro del machine learning basado en arquitecturas neuronales. Un modelo basado en deep learning puede aprender a realizar tareas de clasificación directamente a partir de imágenes, texto o sonido, etc. Sin necesidad de intervención humana para la selección de características. Esto se puede considera la principal ventaja del deep learning, llamada “feature discovering”. Pueden, además, poseer una precisión que supera a la capacidad del ser humano.

El aprendizaje profundo es un subconjunto de aprendizaje automático en Inteligencia Artificial (AI) que tiene redes capaces de aprender sin supervisión a partir de datos que no están estructurados ni etiquetados. También conocido como Deep Neural Learning o Deep Neural Network. Aquí es donde reside la gran diferencia respecto al Machine Learning.

Las Redes Neuronales Artificiales se inspiran en nuestra comprensión de la biología de nuestros cerebros, todas esas interconexiones entre neuronas. Pero, a diferencia de un cerebro biológico donde cualquier neurona se puede conectar a cualquier otra neurona dentro de una cierta distancia física, estas redes neuronales artificiales tienen capas discretas, conexiones y direcciones de propagación de datos.

Pueden, por ejemplo, tomar una imagen, cortarla en un grupo de teselas que se ingresan en la primera capa de la red neuronal. En la primera capa, las neuronas individuales pasan los datos a una segunda capa. La segunda capa de neuronas hace su tarea, y así sucesivamente, hasta que se produce la última capa y producción final. Cada neurona asigna una ponderación a su entrada: qué tan correcta o incorrecta es en relación con la tarea que se realiza. El resultado final se determina luego por el total de esas ponderaciones.

Por ejemplo, imaginemos de nuevo la señal de Stop. Los atributos de una imagen de una señal de stop son cortados y “examinados” por las neuronas: su forma octogonal, el color rojo de su motor de bomberos, sus letras distintivas, el tamaño de su señal de tráfico y su movimiento o falta de ella. La tarea de la red neuronal es concluir si esto es una señal de Stop o no. Se trata de un “vector de probabilidad”, realmente una suposición altamente educada, basada en la ponderación.

google self driving

Self-driving car de Google

El Deep Learning ha permitido muchas aplicaciones prácticas de Machine Learning y, por extensión, el campo general de Inteligencia Artifical. El aprendizaje profundo desglosa las tareas de manera que hace que todo tipo de asistencia en máquinas parezca posible, incluso probable. Los automóviles sin conductor, una mejor atención médica preventiva, incluso mejores recomendaciones de películas, son claros ejemplos de aplicación. La Inteligencia es el presente y el futuro. Con la ayuda de Deep Learning, la Inteligencia Artificial puede llegar a ese estado de ciencia ficción que tanto tiempo hemos imaginado con Star Wars y Terminator.

En la última década, las empresas están utilizando el aprendizaje profundo para resolver los desafíos a nivel empresarial. Desde la detección de rostros (Face ID) hasta recomendaciones de productos, segmentación de clientes, reorganización de dígitos, traducción automática, inteligencia de negocios, Internet de las cosas, seguridad de redes, etc. El uso del  deep learning  y machine learning han transformado por completo el mundo en el que vivimos hoy.

Fuente: https://hackernoon.com/top-differences-between-artificial-intelligence-machine-learning-deep-learning-d39cb6f6feaa

 

Comentarios ( 0 )

    Deja un comentario