Tag: Deep Learning

ALGORITMO.  En Ciencias de la Computación, un algoritmo es un conjunto de pasos para realizar una tarea. En otras palabras, una secuencia lógica  y con instrucciones que forman una fórmula matemática o estadística para realizar el análisis de datos.

ANÁLISIS DE SENTIMIENTO. El análisis de sentimiento se refiere a los diferentes métodos de lingüística computacional que ayudan a identificar y extraer información subjetiva del contenido existente en el mundo digital. Gracias al análisis del sentimiento, podemos ser capaces de extraer un valor tangible y directo, como puede ser determinar si un texto extraído de la red Internet contiene connotaciones positivas o negativas.

ANÁLISIS PREDICTIVO (AP). El análisis predictivo pertenece al área de la Analítica Empresarial. Se trata de utilizar los datos para determinar que puede pasar en el futuro. La AP permite determinar la probabilidad asociada a eventos futuros a partir del análisis de la información disponible (presente y pasada). También permite descubrir relaciones entre los datos que normalmente no es detectada con un análisis menos sofisticado. Técnicas como la minería de datos (data mining) y los modelos predictivos son utilizados.

ANALÍTICA EMPRESARIAL (AE). La Analítica Empresarial comprende los métodos y las técnicas que se utilizan para recopilar, analizar e investigar el conjunto de datos de una organización, lo cual genera conocimiento que se transforma en oportunidades de negocio y mejora la estrategia empresarial. AE permite una mejora en la toma de decisiones ya que éstas se basan en la obtención de datos reales y tiempo real y permite conseguir objetivos empresariales a partir del análisis de estos datos.

BIG DATA (Grande volúmenes de datos). Actualmente nos encontramos en un entorno en el que cada día se generan trillones de bytes de información. A esta enorme cantidad de datos producidos día a día, la denominamos Big Data. El crecimiento de los datos provocados en Internet y otras áreas (Ej. Genómica) hacen necesarias nuevas técnicas para poder acceder y utilizar estos datos. Al mismo tiempo estos grandes volúmenes de datos ofrecen nuevas posibilidades de conocimiento y nuevos modelos de negocio. En particular, en Internet, este crecimiento comienza con la multiplicación en el número de webs comenzando los buscadores (ej. Google) a buscar nuevas formas de almacenar y acceder a estos grandes volúmenes de datos. Esta tendencia (blogs, redes sociales, IoT …) está provocando la aparición de nuevas herramientas de Big Data y la generalización de su uso.

BUSINESS ANALYTICS (Analítica Empresarial). La Analítica Empresarial o Business Analytics permite conseguir los objetivos empresariales, a partir del análisis de datos. Básicamente permite detectar tendencias y realizar pronósticos a partir de modelos predictivos y utilizar estos modelos para optimizar los procesos de negocio.

BUSINESS INTELLIGENCE (Inteligencia de Negocio). Otro concepto relacionado con la AE es la Inteligencia Empresarial (IE) centrada en el uso de los datos de una empresa para facilitar también la toma de decisiones y anticipar acciones empresariales. La diferencia con la AE es que la IE es un concepto más amplio, no solo se centra en el análisis de datos sino que éste es un área dentro de la IE. Es decir, la IE se trata de un conjunto de estrategias, aplicaciones, datos, tecnología y arquitectura técnica entre las que se encuentra la AE; y todo ello, enfocado a la creación de nuevo conocimiento a través de los datos existentes de la empresa

DATA MINING o minería de datos. Data Mining (minería de datos) es también conocida como Knowledge Discovery in database (KDD). Es comúnmente definida como el proceso para descubrir patrones útiles o conocimientos a partir de fuentes de datos tales como Bases de Datos, textos, imágenes, la web, etc.  Los patrones deben ser válidos, potencialmente útiles y entendibles. La minería de datos es un campo multidisciplinar que incluye: aprendizaje automático, estadísticas, sistemas de base de datos, inteligencia artificial, Information Retrieval, visualización de la información, … El objetivo general del proceso de minería de datos consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior.

DATA SCIENCE (Ciencia de datos).  La oportunidad que los datos ofrecen para generar nuevo conocimiento requiere de técnicas sofisticadas de preparación de estos datos (estructuración) y análisis de los mismos. Así en Internet, sistemas de recomendación, traducción automática y otros sistemas de Inteligencia Artificial se basan en técnicas de Data Science.

DATA SCIENTIST. El data scientist, como su propio nombre indica, es un experto en la Ciencia de Datos (Data Science). Su trabajo se centra en extraer conocimiento a partir de grandes volúmenes de datos (Big Data) extraídos de diversas fuentes y múltiples formatos para dar respuesta a las cuestiones que se planteen.

DEEP LEARNING o aprendizaje profundo es una técnica dentro del machine learning basado en arquitecturas neuronales. Un modelo basado en deep learning puede aprender a realizar tareas de clasificación directamente a partir de imágenes, texto o sonido, etc. Sin necesidad de intervención humana para la selección de características, esto se puede considera la principal característica y ventaja del deep learning, llamada “feature discovering”. Pueden, además, poseer una precisión que supera al ser humano.

GEOMARKETING. El análisis conjunto de los datos demográficos, económicos y geográficos posibilita estudios de mercado para rentabilizar las estrategias de marketing. El análisis de este tipo de datos se puede llevar a cabo a través del Geomarketing. Tal como su propio nombre indica, Geomarketing es una confluencia entre geografía y marketing. Se trata de un sistema integrado de información -datos de diversa índole-, métodos estadísticos y representaciones gráficas orientados a dar respuestas a cuestiones de marketing de forma rápida y sencilla.

INTELIGENCIA ARTIFICIAL. En computación se trata de programas o bots diseñados para realizar determinadas operaciones que se consideran propias de la inteligencia humana. Se trata de hacer que éstos sean tan inteligentes como un humano. La idea es que perciban su entorno y actúen en base a ello, centrado en el auto-aprendizaje, sean capaces  de reaccionar ante nuevas situaciones.

INTELIGENCIA ELECTORAL. Este nuevo término “Inteligencia Electoral (IE)” es la adaptación de modelos matemáticos y de Inteligencia Artificial a las peculiaridades de una campaña electoral. El objetivo de esta inteligencia es la obtención de una ventaja competitiva en los procesos electorales. ¿Sabes cómo funciona?

INTERNET OF THINGS (IoT). Este concepto, Internet de las Cosas, fue creado por Kevin Ashton y hace referencia al ecosistema en el que los objetos cotidianos están interconectados a través de Internet.

MACHIEN LEARNIN (Aprendizaje automático). Este término hace referencia a la creación de sistemas a través de la Inteligencia Artificial,  donde lo que realmente aprende es un algoritmo, el cual supervisa los datos con la intención de poder predecir comportamientos futuros.

MINERÍA WEB. La minería web tiene como objeto descubrir información útil o el conocimiento (KNOWLEDGE) procedente de la estructura de hipervínculo web, contenido de la página y datos de usuario. Aunque la minería web utiliza muchas técnicas de minería de datos, no es meramente una aplicación de técnicas de minería de datos tradicionales, debido a la heterogeneidad y la naturaleza semi-estructurada o no estructurada de los datos de la web. La minería web o web mining comprende una serie de técnicas encaminadas a obtener inteligencia a partir de datos procedentes de la web. Aunque las técnicas utilizadas tienen su raíz en las técnicas de data mining o minería de datos, presentan características propias debido a las particularidades que presentan las páginas webs.

OPEN DATA. El Open Data es una práctica que tiene la intención de disponer de unos tipos de datos de forma libre para todo el mundo, sin restricciones de derecho de autor, patentes u otros mecanismos. Su objetivo es que estos datos puedan ser consultados, redistribuidos y reutilizados libremente por cualquiera, respetando siempre la privacidad y seguridad de la información.

PERIODISMO DE DATOS (periodismo computacional). De una forma simple y directa, se trata del periodismo que para crear artículos o investigaciones periodísticas se requiere del conocimiento de técnicas del áreas de data science, big data, inteligencia artificial, entre otras. El periodista de datos debe ser  capaz de dar soporte a sus artículos mediante el análisis de datos, utilizando técnicas analíticas como el análisis de redes sociales, clustering, information retrieval, recommendation systems, etc.

PROCESAMIENTO DEL LENGUAJE NATURAL (PLN). Del procesamiento conjunto de la ciencia computacional y la lingüística aplicada, nace el Procesamiento de Lenguaje Natural (PLN o NLP en inglés), cuyo objetivo no es otro que el de hacer posible la compresión y procesamiento asistidos por ordenador de información expresada en lenguaje humano, o lo que es lo mismo, hacer posible la comunicación entre personas y máquinas.

PRODUCT MATCHING. El Product Matching es un área perteneciente a Data Matching o Record Linkage encargada de identificar automáticamente aquellas ofertas, productos o entidades en general, que aparecen en la web procedente de diversas fuentes, aparentemente de forma distinta e independiente, pero que hacen referencia a una misma entidad real. En otras palabras, el proceso de Product Matching consiste en relacionar para distintas fuentes aquellos productos que son el mismo.

 

El terreno de las tecnologías de información está a la orden del día y son muchas las empresas que vuelcan gran parte de sus gastos en invertir en ellas. Los pilares sobre los que se sustentan las TIC´s son la Transformación Digital, el Big Data y la Industria 4.0. Siendo la Transformación Digital el principal proceso que escogen las empresas para consolidarse en la era más tecnológica conocida hasta la fecha.

Existen multitud de tendencias que vienen de la mano de estas tecnologías de la información, pero en este post sólo os hablaremos de aquellas que consideramos más importantes durante este 2018.

Inteligencia Artificial

Su despegue definitivo tuvo a lo largo del pasado año, constituyéndose a día de hoy como la tecnología más importante y con mayor progresión. Las principales tecnologías de inteligencia artificial que marcarán los años venideros son:

  • Del procesamiento conjunto de la ciencia computacional y la lingüística aplicada, nace el Procesamiento de Lenguaje Natural (PLN o NLP en inglés), cuyo objetivo no es otro que el de hacer posible la compresión y procesamiento asistidos por ordenador de información expresada en lenguaje humano, o lo que es lo mismo, hacer posible la comunicación entre personas y máquinas.
  • Machine Learning o aprendizaje automático, es una Inteligencia Artificial que crea sistemas que aprenden de forma automática. Actualmente, se utilizan en gran variedad de aplicaciones empresariales, principalmente para realizar predicciones, sistemas de recomendación o clasificaciones. El objetivo es crear algoritmos inteligentes para detectar patrones exitosos y aprender de estas tendencias para poder repetirlas.
  • Deep Learning o Aprendizaje profundo. Es una técnica dentro del machine learning basado en arquitecturas de redes neuronales artificiales. Está relacionado con algoritmos inspirados en la estructura y función del cerebro. Estas redes neuronales artificiales se construyen como el cerebro humano, con nodos de neuronas conectados como una red. Un modelo basado en deep learning puede aprender a realizar tareas de clasificación directamente a partir de imágenes, texto o sonido, etc. sin necesidad de intervención humana para la selección de características.

Internet de las cosas (IoT)

Con el Internet de las Cosas (en inglés, Internet of Things, IoT), hacemos referencia a la conexión de las personas con los objetos. El IoT se trata de la digitalización del mundo físico. Pongamos un ejemplo: IoT puede ser que un frigorífico pueda realizar una compra online de un producto que haya caducado.

Otro ejemplo podemos observarlo en las zapatillas deportivas en las que, mediante un chip en las botas, podemos tener datos reales sobre el esfuerzo físico realizado.

Quizás, aún tenemos un largo recorrido para que todos tengamos en nuestros hogares frigoríficos inteligentes, pero está a un paso de ser realidad gracias al sistema de identificación por radiofrecuencia, bastará con integrar un chip de pocos milímetros en cualquier objeto del hogar, del trabajo o de la ciudad para poder procesar y transmitir información a partir de él constantemente. El objetivo de todo esto es proporcionar a los consumidores una serie de servicios y aplicaciones inteligentes sin precedentes.

Edge Computing

A medida que los drones inteligentes, los vehículos autónomos y otros dispositivos inteligentes alimentados con inteligencia artificial se conectan y se comunican de manera instantánea a través del IoT, la cuestión del envío de sus datos a la nube es muy poco práctico. Muchos de estos dispositivos necesitan respuesta y procesamiento en tiempo real, lo que convierte al edge computing en la única opción viable.

Como podéis observar, este término está muy ligado al anterior, ya que su principal objetivo es hacer útil aquellos datos recolectados por los sensores y dispositivos loT. Antes, estos datos se enviaban a la nube (Cloud Computing) como almacenamiento y solo servía para obtener cierta información. Actualmente, estos datos procedentes del IoT y de sensores se procesan a través del Edge Computing (análisis en local en lugar de en la nube) y aporta una mayor autonomía a éstos para que sean más “inteligentes”, no sólo para recolectar la información sino también para analizarla.

El edge computing conlleva muchas ventajas: análisis de los datos en tiempo real ya que son analizados a nivel local y abaratamiento de costes operativos ya que no se requieren centros de datos. Sin embargo, aunque el Edge continúe siendo la opción preferida para procesar datos en tiempo real, es probable que los datos más importantes y relevantes sigan dirigiéndose a la nube.

Big Data Analytics: análisis de grandes volúmenes de datos.

Es un concepto que agrupa esas tecnologías y modelos matemáticos que se dedican a almacenar, analizar y cruzar toda grandes volúmenes de datos para intentar encontrar patrones de comportamiento o información útil para hacer de esta información una ventaja competitiva de inteligencia empresarial. Las plataformas de analítica Big Data serán una herramienta indispensable para la toma de decisiones.

Industria 4.0 

Esta industria 4.0, también denominada Industria Inteligente, se trata de una nueva revolución industrial de base tecnológica que constituye una nueva forma de organización y gestión de la cadena de valor de la industria. Esta cuarta revolución industrial viene determinada por la introducción de la tecnología digital en fábricas inteligentes capaces de adaptarse a las necesidades y procesos de producción. Este cambio tecnológico, permite vincular el mundo físico al virtual para hacer de la industria una industria inteligente. Aunque las oportunidades que ofrece esta industria 4.0 son múltiples, la que más nos llama  la atención es que en los próximos años surgirán nuevos modelos de negocio que enriquecerán la cadena de valor de la industria y estarán basados en la creación de nuevas propuestas para los clientes tanto externos como internos. Sin embargo, la integración total de los sistemas de información se enfrentarán a un desafío importante: la recolección de una inmensidad de datos procedentes de una gran variedad de fuentes diversas y heterogéneas, donde entrarán en juego las tecnologías anteriormente citadas: big data, inteligencia artificial, IoT, edge computing…

Blockchain

El blockchain, o cadena de bloques en español, se trata de una base de datos diseñada para almacenar de forma creciente (por bloques) datos ordenados en el tiempo (en cadena) y que no puedan ser modificados una vez publicados (mantiene los datos seguros y privados).

La primera aplicación práctica de la cadena de bloques pudimos verla con la aparición de las criptomonedas o el bitcoin en 2008. También, puede utilizarse para registrar datos de transacciones -se puede aplicar a todo tipo de transacciones que no tienen por qué ser necesariamente económica-, acuerdos, contratos, etc., es decir, todo aquello que se tenga la necesidad de registrar de forma independiente y verificada.

Además, este registro de datos es universal, es decir, no se distribuye en un único sitio sino a través de muchas computadoras y toda persona puede acceder a esta base de datos con la versión actualizada. Esto supone que todo el control del proceso está en manos de los propios usuarios.

El futuro de esta tecnología vendrá de la manos de aquellas empresas que desarrollen sus propios servicios de blockchain o cadena de bloques, sobre todo en el sector bancario, tanto para ofrecer servicio al público en general como para grupos reducidos, un servicio personalizado para clientes específicos.

Realidad aumentada

La realidad aumentada consiste en combinar el mundo real con el virtual mediante un proceso informático, enriqueciendo la experiencia visual y mejorando la calidad de comunicación. No debemos confundir este término con el de realidad virtual, en el post anterior hacemos referencia a ambos términos así como las principales diferencias entre los mismos.

Gracias a esta tecnología se puede añadir información visual a la realidad, y crear todo tipo de experiencias interactivas: catálogos de productos en 3D, probadores de ropa virtual, video juegos y mucho más. Aunque existen tiendas online en las que esta realidad aumentada está implementada, aun queda mucho por recorrer. Cabe esperar que se consolide esta tendencia para que deje de serlo y se instaure como un recurso imprescindible.

La era digital ha provocado una explosión de datos en todas las formas y desde todas las regiones del mundo. Esta explosión de datos, conocido como Big Data, no siempre están bien estructurados y no son accesibles. Se podría tardar que una persona pudiera manualmente extraer la información relevante de estos grandes datos desestructurados. Sin embargo, existen técnicas de Inteligencia Artificial que permiten la estructuración de los datos y posibilita la extracción de información útil de los mismos. Por este motivo, las empresas se dan cuenta el increíble potencial del Big Data & Inteligencia Artificial.

QUÉ ES DEEP LEARNING

Deep learning (aprendizaje profundo) es una nueva técnica dentro del aprendizaje automático (machine learning) basado en arquitecturas de redes neuronales. Está relacionado con algoritmos inspirados en la estructura y función del cerebro, de ahí el nombre redes neuronales artificiales. Las redes neuronales artificiales se construyen como el cerebro humano, con nodos de neuronas conectados como una red.

Mientras que los modelos tradicionales crean análisis con estructuras lineales, los modelos de deep learning se caracterizan por su estructura jerárquica permitiendo procesar los datos con un enfoque no lineal.

¿Qué tiene de especial el deep learning? Un modelo basado en deep learning puede aprender a realizar tareas de clasificación directamente a partir de imágenes, texto o sonido, etc. Sin necesidad de intervención humana para la selección de características, esto se puede considera la principal característica y ventaja del deep learning, llamada “feature discovering” .Pueden, además, poseer una precisión que supera al ser humano.

EN QUÉ CONSISTE, CÓMO FUNCIONA

Los modelos se entrenan mediante un amplio conjunto de datos etiquetados y arquitecturas de redes neuronales que contienen muchas capas.

La primera capa de la red neuronal procesa una entrada de datos brutos como por ejemplo una imagen, y la pasa a la siguiente capa como salida, este proceso se va repitiendo sucesivamente hasta completar todas las capas de la red neuronal. Por ejemplo, una imagen que comienza como una matriz de píxeles. Las características aprendidas en la primera capa puede ser por ejemplo, la aparición o no de ejes en una parte concreta de la imagen. La segunda capa detecta uniones de ejes. La tercera capa aprende combinaciones que correspondería a partes de objetos. La principal característica de este método es que estas capas realizan el descubrimiento de características sin intervención humana, aprendiéndolo directamente de los datos brutos.

El término “deep” (profundo) suele hacer referencia al número de capas ocultas en la red neuronal que pueden ser hasta 150 capas (las redes neuronales tradicionales solo contienen dos o tres capas oculta).

ARQUITECTURAS DEEP LEARNING

Hemos comentado que la mayoría de métodos de machine learning emplean arquitecturas neuronales, por lo que las arquitecturas de deep learning emplean modelización de redes neuronales, tales como:

  • Deep Neural Network (DNN) o Redes neuronales profundas
  • Convolutional Neuronal Network (CNN) ó Redes neuronales profundas convolucionales
  • Deep Belief Network (DBN) o Redes de creencia profundas

corteza visual_deep learning

CONVOLUTIONAL NEURONAL NETWORK 

En este post nos centraremos en la arquitectura de deep learning, Convolutional Neural Network (CNN) que, traducido al español, se trata de Redes Neuronales Convolucionales. En este tipo de arquitectura se emplean modelizacion de redes neuronales artificiales donde las neuronas correspondes a campos receptivos -similar a las neuronas en la corteza visual V1 de un cerebro humano-. Este tipo de redes son muy efectivas para tareas de:

  • Detección y categorización de objetos
  • Clasificación y segmentación de imágenes

El objetivo de CNN es aprender características de orden superior utilizando la operación de convolución. Puesto que las redes neuronales convolucionales puede aprenden relaciones de entrada-salida (donde la entrada es una imagen), en la convolución, cada pixel de salida es una combinación lineal de los pixeles de entrada.

Pero, ¿qué significa “convolucion”? La convolución consiste en filtrar una imagen utilizando una máscara. Diferentes máscaras producen distintos resultados. Las máscaras representan las conexiones entre neuronas de capas anteriores. (INAOE).

Estas capas aprenden progresivamente las características de orden superior de la entrada sin procesar. Este proceso para aprender características automáticas es la característica principal del modelo de deep learning, llamado descubrimiento de características.

Las redes neuronales convolucionales se forman usando dos tipos de capas: convolucionales y pooling.(INAOE). La capa de convolución transforma los datos de entrada utilizando la operación matemática de convolución. La operación de convolución describe cómo fusionar dos conjuntos de información diferentes.

Después de la capa o capas de convolucion se usa una capa de pooling. La función de las capas de pooling es resumir las respuestas de las salidas cercanas. La principal característica de la capa de pooling son dos. Primero, la capa de pooling reduce progresivamente el tamaño espacial de los datos. Y segundo, la agrupación ayuda a obtener una representación invariable a una pequeña traslacion de la entrada.

Convolutional Neuronal Network

Las redes neuronales convolucionales fueron algunas de las primeras redes neuronales aplicadas para resolver aplicaciones comerciales importantes. Un ejemplo de ello fue en la década de 1990, AT & T desarrolló un modelo de CNN para la lectura de cheques. También más tarde se desarrollaron muchos sistemas OCR basados ​​en CNN. Actualmente, el interés por el deep learning se debe en gran parte a la victoria de Krizhevsky et al. en el desafío de imageNet.

El congreso IWANN se trata de un foro de discusión para científicos, ingenieros, educadores y estudiantes en el que se debaten y se exponen los últimos descubrimientos realizados en teorías, modelos y sistemas inspirados en la naturaleza. Estos descubrimientos han sido realizados mediante la utilización de diferentes metodologías de inteligencia computacional, enfocadas particularmente en temas relevantes al Deep Learning, la computación centrada en el ser humano y en proyectos del cerebro humano.

Este evento, organizado por la Universidad de Málaga, Universidad de Granada, Universidad Politécnica de Catalunya, Universidad de Cádiz y IEEE Computational Intelligence Society se realiza cada dos años, y los próximos días 14, 15 y 16 de junio se celebrará por primera vez en la ciudad de Cádiz.

Coincidiendo con el estreno de la Universidad de Cádiz en la participación de este Congreso, nuestro compañero Mario Rivas, ingeniero I+D+i  de nuestro equipo técnico, asistirá al IWANN el primer día del congreso para hablar de  “Using deep learning for image similarity in Product Matching”. En esta ponencia colaboran también nuestro director técnico Jaime Martel junto a docentes de la Universidad de Cádiz como María De La Paz Guerrero, Elisa Guerrero, Guillermo Bárcena y Pedro L. Galindo.

Ésta ponencia tendrá lugar el primer día de IWANN 2017, el miércoles 14 de junio de 9 a 11 de la mañana en el Salón Lequerica del edificio Constitución 1812 (ver programación).  Será la primera ponencia de las que componen la sesión “Image and Signal Processing” moderada por el Dr. Joseph Constantin.

Asimismo,  a lo largo de estos tres días, en IWANN 2017 se darán cita docentes, investigadores y profesionales del sector donde compartirán experiencias y estudios relacionados con:

  • Los métodos matemáticos y teóricos en la inteligencia computacional.
  • Formulaciones neurocomputacional.
  • Aprendizaje y adaptación.
  • La emulación de las funciones cognitivas.
  • Sistemas y neuro-ingeniería Bio-inspirado.
  • Temas avanzados en inteligencia computacional.
  • Aplicaciones

Además, IWANN 2017 contará con tres ponentes invitados de gran prestigio cómo son:

invited speakers IWANN

  • Matthias Rauterberg, de la Universidad de Eindhoven, que hablará sobre “How to desig for tne unconscious”.
  • Ulrich Rückert, de la Universidad de Bielefeld, cuya ponencia tratará acerca de “Cognitronics: Resource-efficient Architectures for Cognitive Systems”.
  • Le Lu, del Instituto Nacional de Salud de Estados Unidos, cuyo tema será “Towards ´Big Data, Weak Label and True Clinical Impact´ on Medical Image Diagnosis: The Roles of Deep Label Discovery and Open-ended Recognition”.